Positive stationary solutions for p-Laplacian problems with nonpositive perturbation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

POSITIVE SOLUTIONS OF BOUNDARY VALUE PROBLEMS WITH p-LAPLACIAN

In this article, we study a class of boundary value problems with p-Laplacian. By using a “Green-like” functional and applying the fixed point index theory, we obtain eigenvalue criteria for the existence of positive solutions. Several explicit conditions are derived as consequences, and further results are established for the multiplicity and nonexistence of positive solutions. Extensions are ...

متن کامل

On Positive Solutions for a Class of p-Laplacian Problems

We consider the system ⎧ ⎪ ⎨ ⎪ ⎩ −Δ p u = λf (v) in Ω −Δ q v = μg(u) in Ω u = v = 0 on ∂Ω (I) where Δ p u = div(|∇u| p−2 ∇u), Δ q v = div(|∇v| q−2 ∇v), p, q > 1, Ω is the open unit ball in R N , N ≥ 2 and ∂Ω is its boundary. We establish upper and lower estimates for possible positive solutions of system(I).

متن کامل

Positive radial solutions for p-Laplacian systems

The paper deals with the existence of positive radial solutions for the p-Laplacian system div(|∇ui| ∇ui) + f (u1, . . . , un) = 0, |x| < 1, ui(x) = 0, on |x| = 1, i = 1, . . . , n, p > 1, x ∈ R . Here f , i = 1, . . . , n, are continuous and nonnegative functions. Let u = (u1, . . . , un), ‖u‖ = ∑n i=1|ui|, f i 0 = lim‖u‖→0 f(u) ‖u‖p−1 , f i ∞ = lim‖u‖→∞ f(u) ‖u‖p−1 , i = 1, . . . , n, f = (f1...

متن کامل

Existence of Three Positive Solutions for m-Point Discrete Boundary Value Problems with p-Laplacian

We consider the multi-point discrete boundary value problem with one-dimensional p-Laplacian operator Δ φp Δu t − 1 q t f t, u t ,Δu t 0, t ∈ {1, . . . , n − 1} subject to the boundary conditions: u 0 0, u n ∑m−2 i 1 aiu ξi , where φp s |s|p−2s, p > 1, ξi ∈ {2, . . . , n − 2} with 1 < ξ1 < · · · < ξm−2 < n − 1 and ai ∈ 0, 1 , 0 < ∑m−2 i 1 ai < 1. Using a new fixed point theorem due to Avery and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2013

ISSN: 0022-0396

DOI: 10.1016/j.jde.2012.10.004